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Value prediction can be used to break data dependency between instructions, en-

suring simultaneous handling of multiple instructions in processors. When such instruc-
tion-level parallelism is lifted, it helps reduce a processor’s idle time and thus enhances 
the performance. To improve the accuracy of value prediction at low additional cost, this 
paper presents a new dispatching mechanism with special data value classifications and 
simple indexing devices. The proposed dispatching mechanism classifies data values 
based on their distribution patterns to attain more balanced utilization of all prediction 
entries. Three different value indexing devices are also introduced to set up more sophis-
ticated and precise predicting steps. Experimental evaluation shows that the new dis-
patching mechanism is able to enhance the accuracy of value predictors at small extra 
cost. 
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1. INTRODUCTION 
 

Prediction techniques are hotly pursued in recent years to increase the instruction- 
level parallelism for processors. Value prediction, one of the major prediction techniques, 
can be used to break data dependency between instructions, thus ensuring simultaneous 
handling of multiple instructions in processors. With satisfying prediction accuracy, 
value prediction can raise the instruction-level parallelism (ILP), help reduce idle time 
and as a result lift up the overall performance for processors.     

For illustration, an original pipeline and a pipeline implemented with value predic-
tion are depicted in Figs. 1 and 2.  

As Fig. 2 shows [1], when a pipeline implemented with value prediction comes to 
the instruction state Fetch, the program counter (PC) will be hashed to the value history 
table (VHT) and then make prediction according to the value stored in the VHT. If the 
prediction value is correct (i.e., equal to the result of the instruction), instructions can be 
executed more quickly due to enhanced ILP; if incorrect, the result of the instruction is 
used to process further work. Instructions that use the incorrect prediction value in their 
pre-execution must now be re-executed.  
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 Fetch Decode Execute CommitIssue
 

Fig. 1. An original pipeline. 

Fetch Decode&
Rename Execute CommitIssue

PC VHT
Access Prediction VerifyIf mispredicted  

Fig. 2. A pipeline with value prediction. 

Table 1. A superscalar flowchart with 3 dependent instructions I, J and K. 

Pipeline

Fetch
Dec&Ren
Execute
Commit

Base Superscalar
1       2       3       4       5       6

I,J,K

K
K
J

J
I

I
I,J,K

With VP
1       2       3       4

I,J,K
I,J,K

I,J,K
I,J,K

 

The flowchart of a superscalar working with or without value prediction is provided 
in Table 1 to show the difference [1]. While the original pipeline needs 6 processing cycles 
to handle the instructions, the pipeline with value prediction (VP) takes only 4 cycles 
(with correct prediction values of instructions I and J) to finish the same job.  

In case the prediction value turns out incorrect, the additional cost resulting from 
making predictions will be wasted. Value predictors, such as the last outcome, stride, 
two-level and hybrid predictors [2-9], avoid such cost waste by adding a threshold value 
[10] to their mechanisms. When a predictor fails to satisfy the threshold, prediction will 
be aborted. 

Some advanced techniques, either history-based, stride-based, hybrid-based or con-
text-based, have been introduced to increase prediction accuracy for value predictors 
[11-13]. These designs work in the single instruction level and make predictions accord-
ing to previous instruction results. To store previous instruction results, we need storages. 
The size of the storage and the way to store data in it may significantly affect the per-
formance of a value predictor in terms of prediction accuracy and hardware cost. It is 
clear that more stored “history” data may lead to higher prediction accuracy, but without 
proper dispatching designs, the needed cost will also rise. 

A new and cheap dispatching mechanism involving special value classification and 
indexing is developed in this paper to improve prediction accuracy for lower-cost value 
predictors, such as the last outcome and stride predictors, at small additional cost. In the 
proposed dispatching architecture, data values are classified as positive/negative and 
specific/others based on their distribution patterns to attain even utilization of all predic-
tion entries. Three indexing techniques, including indexing by the last instruction result, 
indexing by the 2-bit counter, and indexing by the last instruction result and by collocat-
ing the positive/negative bit fields, are presented to aid the dispatching operation. Simu-
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lation results show that such a new dispatching mechanism is able to improve prediction 
accuracy for certain value predictors at negligible extra cost.  

2. BACKGROUND 

Value predictors can be categorized as stride-based (the stride predictor), context-  
based (the last outcome, two-level and finite context method predictors), and hybrid (the 
hybrid predictor). 

2.1 The Last Outcome Value Predictor [2-5] 

The last outcome value predictor uses the instruction address, also known as the 
program counter (PC), as the hash function’s input. The hash function and decoder have 
four outputs: the index of the classification table (CT), the index of VHT, TAG_CT and 
TAG_VHT. The “indexed” TAG_CT and TAG_VHT (indexed by the hash function and 
decoder) are respectively compared with the “calculated” TAG_CT and TAG_VHT 
(calculated from the hash function). If one of the comparisons turns out unequal, no pre-
diction will be made. If both the indexed TAG_CT and TAG_VHT equal their calculated 
counterpart, the indexed counter in CT will be compared with the set threshold. When 
the counter is equal to or bigger than the set threshold, prediction will be made; other-
wise prediction is aborted. The predictor uses the values stored in VHT to make predic-
tions. When a prediction is correct (i.e., when the prediction value equals the instruction 
result), the counter will be increased by 1; otherwise it is decreased by 1. 
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Fig. 3. The last outcome predictor. 

 
The architecture of the last outcome predictor [4], shown in Fig. 3, consists of 5 

fields (TAG_CT, TAG_VHT, Threshold, Counter and Value) and 4 functions (And, 
Hash Function, Decoder and =). TAG_CT and TAG_VHT store the identity of the instruc-
tion currently mapped to the entry; the main function is to check if the entry corresponds 
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to the instruction to be predicted. Counter records the prediction history: The counter 
will be increased or decreased by 1 when the prediction result is correct or incorrect. If 
the counter reaches the set Threshold, prediction will be made. Value stores the last result 
of the instruction. Hash Function classifies instructions. Decoder helps decode indexes. 
= checks if the prediction will be made or not, depending on the counter and the threshold.  
 
2.2 The Stride Value Predictor [3, 6, 7] 

 
The stride predictor has four fields, tag, value, state and stride, at each entry (see Fig. 

4 below). There are three values in the state field: initial, transient and steady. Predic-
tions are made according to the stride, i.e., the difference of the two most recent instruc-
tion results, and the prediction value will be value + stride.  
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Fig. 4. The stride value predictor. 
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[Don’t predict]
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Update value
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Update value

Different stride / 
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Same stride / 
Update value

Different stride / 

Update value and stride  
Fig. 5. The state transition of the stride predictor. 

 
Fig. 5 shows the three state values: initial, transient and steady. Predictions will be 

made only in the steady state. The following is an example of the state changes. When an 
instruction is executed for the first time, its result (result 1) is stored into value, and the 
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state is set to initial. When the instruction is executed again, the result (result 2) is stored 
into value, (result 2 − result 1) is stored into stride and the state is set to transient. If an-
other instance of the same instruction happens and produces result 3, the result is again 
stored into value. Then compare (result 3 − result 2) with the stride value: If equal, the 
state is set to steady and prediction is made by adding together the value and stride fields. 
When a different stride appears, the state is then set to transient. 
 
2.3 The Two-Level Value Predictor [3, 8] 

  
A two-level predictor contains two tables: the value history table (VHT) and the 

pattern history table (PHT), as shown in Fig. 6. VHT includes tag, LRU info, data values 
and a value history pattern (VHP). The two decoders in Fig. 6 are used to decode the 
values generated in the hash function and VHT. Data values store the last 4 unique re-
sults produced by the same instruction. LRU info records the index (0, 1, 2, 3) of the 
least recently entered value in the data values field. For example, if the data values field 
stores [21, 35, 46, 98] with 35 being the least recently entered value, the LRU info value 
will be “1”. When a new unique data value is produced, it replaces the least recently en-
tered value of the data values field. VHP stores the 2p-bit pattern: p refers to the last in-
struction result and the pattern is the binary sequence code used to index to the data val-
ues field. The two-level value predictor has its name because it uses a two-level index to 
reach PHT. The four up/down counters (C0, C1, C2, C3) in PHT are independent. If the 
prediction value equals the instruction result, the counter value will be increased by 3 
(not to exceed a predetermined maximum counter value); otherwise it is decreased by 1 
(to the minimum of 0). The two-level value predictor works as follows. When an instruc-
tion is fetched, its address is used to index to an entry in VHT. If the tag is matched, pre-
diction is made. VHP is sent to index to an entry in PHT. The predicted value is then 
decided from the max of the 4 counter values in PHT. If the max counter value is greater  
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Fig. 6. The two-level value predictor. 
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than or equal to the threshold value, PHT will send a 2-bit binary code (i.e., 00, 01, 10, or 
11) to MUX which then uses the binary code to select a data value as the predicted value. 
If the max counter value is less than the threshold value, prediction is cancelled. 

2.4 The Hybrid Value Predictor [3, 9] 

The hybrid value predictor is a combined mechanism of the two-level and stride 
predictors, retaining advantages and avoiding disadvantages of both predictors. As men-
tioned, the two-level predictor makes no prediction when all of the counter values are 
smaller than the threshold value, and the stride predictor makes no prediction in the ini-
tial/transient states. As a combined mechanism, the hybrid predictor is able to avoid the 
problem by making predictions with one predictor when the other fails.  

2.5 The Finite Context Method (FCM) Value Predictor [11, 12] 

The FCM predictor predicts the next value based on a finite number of preceding 
values. Specifically, an order k FCM predictor uses k preceding history values as the 
context. Counters are used to record repetitions of values immediately following some 
special context patterns, and the value with the maximum counter is selected as the pre-
diction value. As the size of counters is limited, if one counter reaches its maximum 
value, all of the counters that record the same context will be reset to half. The advantage 
of going with small sized counters is that the recorded data are always the latest or the 
most recently used. In general, the n different FCMs leveled 0 to n − 1 will compare the 
context, starting from the highest level to the lower ones, to find the desirable predicted 
value (with the highest-level). 

3. COST EVALUATION FOR VARIOUS PREDICTORS 

In developing value predictors, enhancing prediction accuracy has been the major 
concern; cost is seldom considered or analyzed. As a consequence, accuracy is often 
pursued at the cost of expensive hardware complexity. For better understanding of the 
situation, this section provides a cost analysis on existing value predictors. 

Note that the sizes of value predictors in our later discussion are decided based on 
the architectures given in section 2. We assume that there are 12 bits in the tag field, 64 
bits in the value field and the number of entries is 4,096. However, there are different 
parameters for different predictors. For instance, we use 2 bits in the state field and 6 bits 
in the stride field of the stride predictor. For the first level of the two-level predictor, 
there are 2 bits in the LRU field and 2 × 6 bits in the VHP field; for the second level, the 
number of entries is 4,096 and the second PHT field has 2 × 4 bits. The same setting (for 
the above stride and two-level predictors) is adopted for the hybrid predictor. The FCM 
predictor has 4,096 bits in both the first and second level entries, with 4 × 64 bits used to 
calculate the PHT field in the second level. 

Table 2 lists the parameters of each value predictor. The parameters are obtained 
following the Simplescalar simulator [9, 13, 14]. Take the stride predictor as an example. 
The first level entry is the index of VHT, indicating VHT can store a total of 4,096 
entries. As the predictor has no second level, the second level entry and the dispatch bits  
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Table 2. Parameters of value predictors. 

 First level 
entry 

Second level 
entry 

No. of data 
(per entry) 

Dispatch bits 
(per entry) Threshold 

Last 4,096  1  2 
2 level 4,096 4,096 4 12 3 
FCM2 4,096 4,096 2 + 4 0 3 
Hybrid 4,096 4,096 4 + 1 12 3 
Stride 4,096  1 + 1   

Table 3. Cost for value predictors. 

 No. of data  
(per entry)

Difference 
value 

(per entry)

Dispatch 
bits 

(per entry)

No. of 
PN-bits 

(per entry) 

Total cost  
(total bits) 

Last 1 0 0  304K 
2 level_4 4 0 12  1160K 
FCM2 2 + 4 0 0  1536K 
Hybrid_4 4 1 12  1176K 
Stride 1 1 0  336K 
2 level_2 2 0 12  632K 
Hybrid_2 2 1 12  648K 

Last + Single + PN-bit + SOdisp 1 0 0 1 304K + 4K 
Stride + Single + PN-bit + SOdisp 1 1 0 1 336K + 4K 

 
are ignored. The parameter in the number of data is 1 + 1 because it needs to store a data 
value and a difference value; there is no threshold because prediction is made according 
to the states, not the threshold value.  

Table 3 lists the required cost for various value predictors. The cost is counted by 
the needed bits which reflect both the storage and time overhead. (Time overhead due to 
comparators of a predictor is dominated by the bits involved in comparisons.) As we can 
see, the last and stride predictors have the least cost (304K bits for the former and 336K 
bits for the latter) because of their simple architectures.  
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Fig. 7. Cost for various value predictors. 
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As mentioned, the goal of this paper is to present a cheap dispatching mechanism 
which can enhance prediction accuracy for lower-cost value predictors, such as the last 
outcome and stride predictors, to compete with the performance of higher-cost predictors, 
such as the two-level predictor, at small extra cost. To pinpoint the significance of our 
investigation, the cost of the last outcome and stride predictors incorporated with our 
proposed dispatching mechanism is also included in Table 3 and Fig. 7. Note that the 
cost for adding the proposed dispatching mechanism PN-bit + SOdisp is only 4K which 
is obtained from PN-bit (1 bit) × 4,096 (number of the first level entries) + Single PN-bit 
(1 bit) × 1 = 4,097 bits, to be fully discussed in later sections. 

4. THE PROPOSED DISPATCHING MECHANISM 

In our attempt to develop a new dispatching mechanism, we first classify values into 
positives and negatives but find that dispatching by such a value classification does not 
raise prediction accuracy as much as expected. Speculating that this might be caused by 
uneven distribution of the positive and negative values, we conduct an analysis on value 
distribution. The result confirms our speculation: There are indeed more positive values 
than negative ones. A more detailed value analysis is then undertaken to check the num-
ber of values in 7 divided locations (shown later in Fig. 16). It turns out the number of 
values in one specific location (0~268,435,456) almost equals the total number of values 
in all the other locations. This finding leads to a more effective dispatching design -- dis-
patching by the specific (location) /others (locations) value classification. (Note that in 
determining the range of the divided locations, we first partition values into positive and 
negative but find the result undesirable because of uneven distribution of the positive and 
negative values. We then attempt to divide the locations into 4 and then more areas until 
we find out the number of values in interval 0~268,435,456 almost equals the total num-
ber of values in all other intervals.)   

Besides value classification, three value indexing techniques are also presented to 
strengthen the proposed dispatching mechanism. 

4.1 Previous Dispatching  

A large number of value predictors adopt the following dispatching architecture: 

(PC div 4) mod 2n                                                  (1) 

where 2n is the amount of prediction table entries, PC is the instruction address and mod 
is the modulo operation. 

Built based on programming analysis, the dispatching architecture is simple, fast, 
easy to implement and able to yield proper performance. It consists of two major opera-
tions. First, divide the instruction address by 4. As the last two bits in the instruction ad-
dress tend to be zero, taking off these two least significant bits will help attain more 
equalized dispatching (to the prediction table). The formula (PC div 4) can be substituted 
by right rotating 2 bits as follows:  
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PC >> 2.                                                          (2) 
 
Then index to the limited prediction table. The result of (PC div 4) is now divided 

by 2n and the remainder is taken as the index value. Taking the remainder as the index 
value is essential since the number of data to be saved is large and the hardware is lim-
ited. 

4.2 The Proposed Dispatching Mechanism 

The proposed dispatching mechanism is designed following careful investigation on 
previous dispatching practices and aims to reach favorable performance with possibly the 
least hardware complexity.   

The new dispatching mechanism involves value classification and indexing. Value 
classification indicates how to classify the prediction table. As mentioned, data values 
can be classified as positive/negative (bigger or smaller than zero) or as specific/others 
(in the specific location of 0~268,435,456 or others). Value indexing, on the other side, 
demonstrates how to index to the classified VHT. For example, the classified VHT for 
positive/negative value classification will be PVHT (positive value history table) or 
NVHT (negative value history table), and for specific/others value classification, it will 
be SVHT (specific value history table) or OVHT (others value history table).  

4.2.1 Value classification 

(1) The positive/negative value classification dispatching  
Data values are first compared with and separated by zero. After analyzing the val-

ues in the benchmarks, we find that values bigger than zero outnumber values smaller 
than zero and set up the positive/negative value classification dispatching. As shown in 
Fig. 8, the original VHT is equally divided into PVHT and NVHT to save positive and 
negative values. (The size of PVHT and NVHT together equals to that of the original 
VHT, making it possible to conduct fair performance comparison between the new dis-
patching architecture and previous ones.)   

TAG Value

Value History Table           
(VHT)

TAG Value

TAG Value

Positive Value History Table   
(PVHT)

Negative Value History Table 
(NVHT)

(PVHT Size = VHT size/2)

(NVHT Size = VHT size/2)  
Fig. 8. The dispatching architecture with positive/negative value classification. 
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(2) The specific/others value classification dispatching  
Our value distribution analysis reveals an important fact that the number of values 

in location 0~268,435,456 almost equals the total number of values in all the other loca-
tions. This finding initiates the specific/others value classification dispatching method in 
Fig. 9.  

TAG Value

Value History Table           
(VHT)

TAG Value

TAG Value

Specific Value History Table   
(SVHT)

Others Value History Table 
(OVHT)

(SVHT Size = VHT size/2)

(OVHT Size = VHT size/2)  
Fig. 9. The dispatching architecture with specific/others value classification. 

 
In this dispatching architecture, the original VHT is equally divided into SVHT and 

OVHT. SVHT is used to save values located in the specific value location (0~268,435,456 
in our simulation); OVHT saves values which are otherwise located. 

Due to a more balanced utilization of all prediction entries, specific/others value 
classification is shown through simulation to outperform positive/negative value classi-
fication in raising prediction accuracy. This is because specific/others value classification 
does a better dispatching job by evenly distributing indexing to SVHT and OVHT with-
out adding extra hardware. (The operations of SOVHT and PNVHT are similar. However, 
we choose to explain our approaches through the operation of PNVHT in the next section 
for easier understanding.) 

4.2.2 Value indexing 

(1) Indexing by the last instruction result  
The last instruction result (being positive or negative) is used during prediction to 

select a table (with positive or negative values). To index by the last instruction result, 
we need to add one additional bit − the single PN-bit. The single PN-bit stores the last 
instruction result which probably indexes to different instructions. To give an example, 
when dispatching is conducted under positive/negative value classification: If the single 
PN-bit indicates positive (= 1), we choose the table that stores positive values to make 
prediction; if the bit is negative, then choose the table with negative values for prediction. 
Once the table is decided, prediction will be made following the steps of the original 
value predictor. If the prediction result is positive, update PVHT; otherwise, update 
NVHT. The advantage of indexing by the last instruction result lies in that it requires 
only one more bit and the additional operation involves only the comparison of the single  
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Fig. 10. The architecture for value indexing by the PN-bit of the last instruction result. 
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Fig. 11. The flowchart for value indexing by the PN-bit of the last instruction result. 

 
PN-bit with 1 (when both values are equal, index to PVHT or SVHT; otherwise, index to 
NVHT or OVHT). The indexing architecture is shown in Fig. 10; its flowchart is de-
picted in Fig. 11. 
 
(2) Indexing by the 2-bit counter  

To index by the 2-bit counter, we first dispatch to the index table (IT) whose size is 
one half of the original VHT. The indexed IT 2-bit counter will decide which table is to 
be used for prediction. If the 2-bit counter is bigger than or equal to 2, take PVHT or 
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SVHT for prediction; otherwise, take NVHT or OVHT. Fig. 12 illustrates the architec-
ture of the last outcome value predictor indexing by the 2-bit counter; its flowchart is 
depicted in Fig. 13. The 2-bit counter first performs value classification and records the 
significant bit of the last instruction result. With a positive result, update the 2-bit counter 
of the indexed entry from IT by adding 1 to it (not to exceed the maximum counter 
value); otherwise, decrease the value by 1 (if it is bigger than the minimum counter 
value). As the 2-bit counter records the significant bit of the last instruction result and 
reflects it in the counter value, it will help choose a most recently and frequently used  
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Fig. 12. The architecture of the last value predictor using the 2-bit counter for indexing. 
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Fig. 13. The flowchart of the last value predictor using the 2-bit counter for indexing. 
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Fig. 14. The architecture of the last value predictor indexing by the last instruction result and by 
collocating the positive and negative bit fields.

prediction table to do the prediction. For example, if the value of the 2-bit counter in an 
entry remains 0 all the time − indicating the recent values for the counter are always 
negative, NVHT or OVHT will be chosen as the prediction table.   
 
(3) Indexing by the last instruction result and by collocating the positive/negative bit 

fields 
This indexing operation needs an additional bit, the single PN-bit. It also needs a 

PN-bit field in each entry to record the positive or negative status of the last result of 
the instruction mapped to the entry. Fig. 14 shows the last outcome predictor with such 
an indexing technique. (Dashed lines indicate connection with both PVHT and NVHT. 
For example, the TAG_VHT value generated from the hash function needs to compare 
with the TAG_VHT value stored in PVHT or NVHT, and the choice of PVHT or NVHT 
is decided by the single PN-bit.) Fig. 15 gives the corresponding flowchart. The “in-
dexed” TAG_CT and TAG_VHT are respectively compared with the “calculated” TAG_ 
CT and TAG_VHT, as mentioned in section 2.1. If both the indexed TAG_CT and 
TAG_ VHT equal their calculated counterparts, compare the PN-bit field with the single 
PN-bit. If both are positive, choose the table with positive values to make predictions; 
otherwise choose the table with negative values. Prediction is then handed over to the 
original predictor. After the prediction is made, update only the indexed table classified 
by the most significant bit.  

With such a comparison mechanism (the PN-bit field), prediction will be more pre-
cisely made. Besides, the added PN-bit field makes it possible to store positive or nega-
tive values at the same entry in the prediction table. To store positive or negative values 
is decided by the current instruction results. If the recent instruction results are all posi-
tive, indexing will be directed to the prediction table with positive values and the PN-bit 
will be 1 − indicating the indexed table is with positive values or in location 0~268,435,456. 
On the other hand, if the recent instruction results are all negative, indexing will be di-
rected to the prediction table with negative values and the PN-bit will be 0, i.e., the in-
dexed table is with negative values or values in locations other than 0~268,435,456. 
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Fig. 15. The flowchart of the last value predictor indexing by the last instruction result and by col-

locating the positive and negative bit fields.   

5. EXPERIMENTAL EVALUATION 

5.1 The Simulation Model, Benchmarks and Value Distribution 
 
Simulations can be trace-driven or program-driven. In trace-driven simulations, 

trace data are saved in computers and used in simulating associated programs. Conduct-
ing trace-driven simulations needs a large storage to save the collected trace data. A pro-
gram- driven simulation uses trace data produced directly by the program itself and as a 
result each simulation will take longer running time.  

This research adopts the trace-driven simulation, using Simplescalar 2.0 [14] in the 
Linux system. Trace data are produced by Simplescalar and used in the Visual C++ pro-
gram under Windows 2000. The simulation uses SPECint95 as benchmarks. Description 
of the 8 benchmarks is given in Table 4; the input and the total number of instructions for 
each benchmark are provided in Table 5. 

Table 4. Description of benchmarks. 

Gcc Compiler 
Go A chess game 

M88ksim A simulator for the 88000 processor 
Compress Data compression program using adaptive Lempel-Ziv coding 

Li Lisp Interpreter 
Ijpeg Jpeg encoder 
Perl Perl interpreter 

Vortex A single user object-oriented database transaction benchmark 
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Table 5. The input and total number of instructions for each benchmark. 

Benchmark Input Total execution counts
Gcc amptjp.i(train) 1,276,486,588 
Go 2stone9.in(train) 548,177,629 

M88ksim ctl.in(train) 48,269,168 
Compress test.in(train) 35,818,826 

Li train.lsp(train) 183,304,340 
Ijpeg vigo.ppm(train) 1,464,821,356 
Perl primes.in(train) 10,519,469 

Vortex Vortex.in(train) 2,520,154,589 
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Fig. 16. Value distribution patterns for various benchmarks. 

 
Value distribution patterns for the 8 benchmarks are presented in Fig. 16. The re-

sults show a common trend for most benchmarks − the number of values located in 
0~268,435,456 is larger than the total number of values in the other locations. The dif-
ference is especially evident in benchmark compress.  
 
5.2 Simulation Results 

 
The following terms are provided to facilitate further discussion. (Note that PNVHT 

and SOVHT need to work with either the Single or the PN-bit indexing.) 
 
Original: the original architecture of a value predictor 
Single: the original architecture of a value predictor with the proposed single PN-bit in-

dexing  
PN-bit: the original architecture of a value predictor with the proposed PN-bit field in-

dexing 
PNdisp: the original architecture of a value predictor with the original VHT being virtu-

ally partitioned into two equal sized tables, PVHT and NVHT (the positive/ 
negative value classification dispatching, using PNVHT) 

SOdisp: the original architecture of a value predictor with the original VHT being virtu-
ally partitioned into two equal sized tables, SVHT and OVHT (the specific/others 
value classification dispatching, using SOVHT) 
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+: combined with the proposed value indexing and classification  
 
5.2.1 Accuracy vs. dispatching by positive/negative value classification  

 
Figs. 17 and 18 collect prediction accuracy for the last outcome and stride predictors 

indexing with and without the single PN-bit/PN-bit field under positive/negative value 
classification dispatching. Fig. 17 displays that with the proposed single PN-bit/PN-bit 
field indexing, the last outcome predictor increases the average prediction accuracy. The 
increase may come from a more sophisticated indexing step: Prediction starts only 
when both the tag and the PN-bit are compared. In Fig. 18, the stride predictor with the  
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Fig. 17. Prediction accuracy for the last outcome predictor indexing with and without the single PN 

bit/PN-bit field under positive/negative value classification.  
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Fig. 18. Prediction accuracy for the stride predictor indexing with and without the single PN- 

bit/PN-bit field under positive/negative value classification. 
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Fig. 19. Prediction accuracy for the last outcome predictor indexing with and without the single 
PN-bit/PN-bit field under specific/others value classification. 

proposed PNdisp dispatching produces lower prediction accuracy in some benchmarks 
but yields higher average accuracy (over the 8 benchmarks) than the original architec-
ture. 

We find out during simulation that value distribution in benchmarks ijpeg and 
m88ksim differs from that in the other benchmarks: The two benchmarks have distinctly 
larger number of negative values. That explains why both the last outcome and stride 
predictors turn over higher prediction accuracy in these two benchmarks when dispatch-
ing by positive/negative value classification. 
 
5.2.2 Accuracy vs. dispatching by specific/others value classification  

 
Based on our analysis on benchmarks (that the amount of values located in 0~ 

268,435,456 approximately equals the total number of values located in all the other lo-
cations), we develop a special value classification method to conduct more efficient 
utilization of all prediction entries. The specific/others value classification dispatching 
method stores the values in 0~268,435,456 in one table and the values in all other loca-
tions in another table. When the amount of values is thus divided into two almost equal 
parts and stored in two tables, all prediction entries can be utilized in a more balanced 
and efficient way. 

Figs. 19 and 20 give prediction accuracy for the last outcome and stride value pre-
dictors indexing with and without the single PN-bit/PN-bit field under the specific/others 
value classification. The result in Fig. 19 shows the last outcome predictor generates 
clear accuracy gain in nearly all benchmarks when indexing by the single PN-bit/PN-bit 
field, and such accuracy gain is obtained at a small additional cost of 4K. 

In Fig. 20, the stride predictor indexing by the single PN-bit/PN-bit field produces 
better accuracy in all 8 benchmarks, and the enhanced average accuracy comes close to 
that of the two-level_2 value predictor. It should be noted that the two-level_2 predictor 
takes 632K to attain the slightly superior accuracy, while the stride predictor with the 
single PN-bit/PN-bit field indexing requires only 340K to get close results. (340K = 
336K + 4K. 336K is the stride predictor’s original cost; 4K is the cost for the proposed  
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Fig. 20. Prediction accuracy for the stride predictor indexing with and without the single PN-bit/ 

PN-bit field under specific/others value classification.  

 
single PN-bit/PN-bit field indexing.) Thus, when hardware complexity is taken into ac-
count, our proposed indexing technique proves to be efficient in strengthening the per-
formance of value predictors. 

6. CONCLUSION 

A desirable dispatching mechanism may raise prediction accuracy and thus enhance 
the performance of value predictors. This paper presents a new dispatching mechanism 
for value predictors, which involves special value classifications and simple indexing 
devices, and is demonstrated through experimental evaluation to improve prediction ac-
curacy at very minimal extra cost.   

Two value classification methods, positive/negative value classification and spe-
cific/others value classification, are introduced according to the special features of value 
distribution patterns collected in our analysis. The main purpose of dispatching by such 
value classifications is to attain more balanced utilization of all prediction entries and 
thus to assist the operation of value predictors. A number of value indexing devices, in-
cluding indexing by the last instruction result, indexing by the two-bit counter, and in-
dexing by the last instruction result and by collocating the positive/negative bit fields, are 
also taken to ensure more sophisticated and precise predicting steps. 

Extensive simulation runs have been conducted to compare the performance of 
value predictors dispatching under the two value classifications and different ways of 
value indexing. The results exhibit that dispatching under specific/others value classifi-
cation enables predictors to produce better prediction accuracy gain than dispatching 
under positive/negative value classification, indicating that the former makes it possible 
to employ prediction entries in a more balanced way. Simulation results also display that 
predictors indexing by the proposed single PN-bit and the PN-bit field constantly out-
perform their original forms, and the increased performance, i.e., accuracy gain, is at-
tained at very limited additional hardware cost.  
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