
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 23, 147-166 (2007)

147

A New Dispatching Mechanism − Using Value
Classification and Indexing − for Value Predictors*

PO-JEN CHUANG AND YU-SHIAN CHIU

Department of Electrical Engineering
Tamkang University

Tamsui, Taipei County, 251 Taiwan
E-mail: pjchuang@ee.tku.edu.tw

Value prediction can be used to break data dependency between instructions, en-

suring simultaneous handling of multiple instructions in processors. When such instruc-
tion-level parallelism is lifted, it helps reduce a processor’s idle time and thus enhances
the performance. To improve the accuracy of value prediction at low additional cost, this
paper presents a new dispatching mechanism with special data value classifications and
simple indexing devices. The proposed dispatching mechanism classifies data values
based on their distribution patterns to attain more balanced utilization of all prediction
entries. Three different value indexing devices are also introduced to set up more sophis-
ticated and precise predicting steps. Experimental evaluation shows that the new dis-
patching mechanism is able to enhance the accuracy of value predictors at small extra
cost.

Keywords: data dependency, instruction-level parallelism, value predictors, prediction
accuracy, dispatching mechanism, value classification, value indexing

1. INTRODUCTION

Prediction techniques are hotly pursued in recent years to increase the instruction-
level parallelism for processors. Value prediction, one of the major prediction techniques,
can be used to break data dependency between instructions, thus ensuring simultaneous
handling of multiple instructions in processors. With satisfying prediction accuracy,
value prediction can raise the instruction-level parallelism (ILP), help reduce idle time
and as a result lift up the overall performance for processors.

For illustration, an original pipeline and a pipeline implemented with value predic-
tion are depicted in Figs. 1 and 2.

As Fig. 2 shows [1], when a pipeline implemented with value prediction comes to
the instruction state Fetch, the program counter (PC) will be hashed to the value history
table (VHT) and then make prediction according to the value stored in the VHT. If the
prediction value is correct (i.e., equal to the result of the instruction), instructions can be
executed more quickly due to enhanced ILP; if incorrect, the result of the instruction is
used to process further work. Instructions that use the incorrect prediction value in their
pre-execution must now be re-executed.

Received December 13, 2004; revised April 15 & July 8 & August 31, 2005; accepted October 19, 2005.
Communicated by Chu-Sing Yang.
* A preliminary version of this paper was presented at the 2003 National Computer Symposium, Dec. 2003.
* This work was supported in part by the National Science Council of Taiwan, R.O.C., under grants No. NSC

90-2213-E-032-019 and NSC 95-2745-E-032-001-URD.

PO-JEN CHUANG AND YU-SHIAN CHIU

148

 Fetch Decode Execute CommitIssue

Fig. 1. An original pipeline.

Fetch Decode&
Rename Execute CommitIssue

PC VHT
Access Prediction VerifyIf mispredicted

Fig. 2. A pipeline with value prediction.

Table 1. A superscalar flowchart with 3 dependent instructions I, J and K.

Pipeline

Fetch
Dec&Ren
Execute
Commit

Base Superscalar
1 2 3 4 5 6

I,J,K

K
K
J

J
I

I
I,J,K

With VP
1 2 3 4

I,J,K
I,J,K

I,J,K
I,J,K

The flowchart of a superscalar working with or without value prediction is provided
in Table 1 to show the difference [1]. While the original pipeline needs 6 processing cycles
to handle the instructions, the pipeline with value prediction (VP) takes only 4 cycles
(with correct prediction values of instructions I and J) to finish the same job.

In case the prediction value turns out incorrect, the additional cost resulting from
making predictions will be wasted. Value predictors, such as the last outcome, stride,
two-level and hybrid predictors [2-9], avoid such cost waste by adding a threshold value
[10] to their mechanisms. When a predictor fails to satisfy the threshold, prediction will
be aborted.

Some advanced techniques, either history-based, stride-based, hybrid-based or con-
text-based, have been introduced to increase prediction accuracy for value predictors
[11-13]. These designs work in the single instruction level and make predictions accord-
ing to previous instruction results. To store previous instruction results, we need storages.
The size of the storage and the way to store data in it may significantly affect the per-
formance of a value predictor in terms of prediction accuracy and hardware cost. It is
clear that more stored “history” data may lead to higher prediction accuracy, but without
proper dispatching designs, the needed cost will also rise.

A new and cheap dispatching mechanism involving special value classification and
indexing is developed in this paper to improve prediction accuracy for lower-cost value
predictors, such as the last outcome and stride predictors, at small additional cost. In the
proposed dispatching architecture, data values are classified as positive/negative and
specific/others based on their distribution patterns to attain even utilization of all predic-
tion entries. Three indexing techniques, including indexing by the last instruction result,
indexing by the 2-bit counter, and indexing by the last instruction result and by collocat-
ing the positive/negative bit fields, are presented to aid the dispatching operation. Simu-

A NEW DISPATCHING MECHANISM FOR VALUE PREDICTORS

149

lation results show that such a new dispatching mechanism is able to improve prediction
accuracy for certain value predictors at negligible extra cost.

2. BACKGROUND

Value predictors can be categorized as stride-based (the stride predictor), context-
based (the last outcome, two-level and finite context method predictors), and hybrid (the
hybrid predictor).

2.1 The Last Outcome Value Predictor [2-5]

The last outcome value predictor uses the instruction address, also known as the
program counter (PC), as the hash function’s input. The hash function and decoder have
four outputs: the index of the classification table (CT), the index of VHT, TAG_CT and
TAG_VHT. The “indexed” TAG_CT and TAG_VHT (indexed by the hash function and
decoder) are respectively compared with the “calculated” TAG_CT and TAG_VHT
(calculated from the hash function). If one of the comparisons turns out unequal, no pre-
diction will be made. If both the indexed TAG_CT and TAG_VHT equal their calculated
counterpart, the indexed counter in CT will be compared with the set threshold. When
the counter is equal to or bigger than the set threshold, prediction will be made; other-
wise prediction is aborted. The predictor uses the values stored in VHT to make predic-
tions. When a prediction is correct (i.e., when the prediction value equals the instruction
result), the counter will be increased by 1; otherwise it is decreased by 1.

Hash
Function

Instruction
Address(PC) D

E
C
O
D
O
R

Classification Table (CT)
TAG_CT Counter

Value History Table (VHT)
ValueTAG_VHT

=
TAG_CT

TAG_VHT

And
Prediction Valid

Predicted
Data Value

=

>Threshold?

Fig. 3. The last outcome predictor.

The architecture of the last outcome predictor [4], shown in Fig. 3, consists of 5

fields (TAG_CT, TAG_VHT, Threshold, Counter and Value) and 4 functions (And,
Hash Function, Decoder and =). TAG_CT and TAG_VHT store the identity of the instruc-
tion currently mapped to the entry; the main function is to check if the entry corresponds

PO-JEN CHUANG AND YU-SHIAN CHIU

150

to the instruction to be predicted. Counter records the prediction history: The counter
will be increased or decreased by 1 when the prediction result is correct or incorrect. If
the counter reaches the set Threshold, prediction will be made. Value stores the last result
of the instruction. Hash Function classifies instructions. Decoder helps decode indexes.
= checks if the prediction will be made or not, depending on the counter and the threshold.

2.2 The Stride Value Predictor [3, 6, 7]

The stride predictor has four fields, tag, value, state and stride, at each entry (see Fig.

4 below). There are three values in the state field: initial, transient and steady. Predic-
tions are made according to the stride, i.e., the difference of the two most recent instruc-
tion results, and the prediction value will be value + stride.

Hash
Function

Instruction
Address

D

E

C

O

D

E

R

Tag State

＝

Value History Table (VHT)

Prediction Valid

Predicted Data Value

w

Value Stride

＋

Fig. 4. The stride value predictor.

Initial

[Don’t predict]

Transient

[Don’t predict]

Steady

[Predict]

VHT miss /
Update value

Any stride /
Update value and stride

Same stride /
Update value

Different stride /
Update value and stride

Same stride /
Update value

Different stride /

Update value and stride
Fig. 5. The state transition of the stride predictor.

Fig. 5 shows the three state values: initial, transient and steady. Predictions will be

made only in the steady state. The following is an example of the state changes. When an
instruction is executed for the first time, its result (result 1) is stored into value, and the

A NEW DISPATCHING MECHANISM FOR VALUE PREDICTORS

151

state is set to initial. When the instruction is executed again, the result (result 2) is stored
into value, (result 2 − result 1) is stored into stride and the state is set to transient. If an-
other instance of the same instruction happens and produces result 3, the result is again
stored into value. Then compare (result 3 − result 2) with the stride value: If equal, the
state is set to steady and prediction is made by adding together the value and stride fields.
When a different stride appears, the state is then set to transient.

2.3 The Two-Level Value Predictor [3, 8]

A two-level predictor contains two tables: the value history table (VHT) and the

pattern history table (PHT), as shown in Fig. 6. VHT includes tag, LRU info, data values
and a value history pattern (VHP). The two decoders in Fig. 6 are used to decode the
values generated in the hash function and VHT. Data values store the last 4 unique re-
sults produced by the same instruction. LRU info records the index (0, 1, 2, 3) of the
least recently entered value in the data values field. For example, if the data values field
stores [21, 35, 46, 98] with 35 being the least recently entered value, the LRU info value
will be “1”. When a new unique data value is produced, it replaces the least recently en-
tered value of the data values field. VHP stores the 2p-bit pattern: p refers to the last in-
struction result and the pattern is the binary sequence code used to index to the data val-
ues field. The two-level value predictor has its name because it uses a two-level index to
reach PHT. The four up/down counters (C0, C1, C2, C3) in PHT are independent. If the
prediction value equals the instruction result, the counter value will be increased by 3
(not to exceed a predetermined maximum counter value); otherwise it is decreased by 1
(to the minimum of 0). The two-level value predictor works as follows. When an instruc-
tion is fetched, its address is used to index to an entry in VHT. If the tag is matched, pre-
diction is made. VHP is sent to index to an entry in PHT. The predicted value is then
decided from the max of the 4 counter values in PHT. If the max counter value is greater

Hash
Function

Instruction
Address

D

E

C

O

D

E

R

Tag
LRU
info

＝

Value History Table (VHT)

Prediction Valid

Predicted Data Value
w

Data Values
Value History

Pattern

D

E

C

O

D

E

R

000000000000
000000000001

111111111111

Pattern History
Table (PHT)

4:1
MUX

22p

C0C1C2C3

Fig. 6. The two-level value predictor.

PO-JEN CHUANG AND YU-SHIAN CHIU

152

than or equal to the threshold value, PHT will send a 2-bit binary code (i.e., 00, 01, 10, or
11) to MUX which then uses the binary code to select a data value as the predicted value.
If the max counter value is less than the threshold value, prediction is cancelled.

2.4 The Hybrid Value Predictor [3, 9]

The hybrid value predictor is a combined mechanism of the two-level and stride
predictors, retaining advantages and avoiding disadvantages of both predictors. As men-
tioned, the two-level predictor makes no prediction when all of the counter values are
smaller than the threshold value, and the stride predictor makes no prediction in the ini-
tial/transient states. As a combined mechanism, the hybrid predictor is able to avoid the
problem by making predictions with one predictor when the other fails.

2.5 The Finite Context Method (FCM) Value Predictor [11, 12]

The FCM predictor predicts the next value based on a finite number of preceding
values. Specifically, an order k FCM predictor uses k preceding history values as the
context. Counters are used to record repetitions of values immediately following some
special context patterns, and the value with the maximum counter is selected as the pre-
diction value. As the size of counters is limited, if one counter reaches its maximum
value, all of the counters that record the same context will be reset to half. The advantage
of going with small sized counters is that the recorded data are always the latest or the
most recently used. In general, the n different FCMs leveled 0 to n − 1 will compare the
context, starting from the highest level to the lower ones, to find the desirable predicted
value (with the highest-level).

3. COST EVALUATION FOR VARIOUS PREDICTORS

In developing value predictors, enhancing prediction accuracy has been the major
concern; cost is seldom considered or analyzed. As a consequence, accuracy is often
pursued at the cost of expensive hardware complexity. For better understanding of the
situation, this section provides a cost analysis on existing value predictors.

Note that the sizes of value predictors in our later discussion are decided based on
the architectures given in section 2. We assume that there are 12 bits in the tag field, 64
bits in the value field and the number of entries is 4,096. However, there are different
parameters for different predictors. For instance, we use 2 bits in the state field and 6 bits
in the stride field of the stride predictor. For the first level of the two-level predictor,
there are 2 bits in the LRU field and 2 × 6 bits in the VHP field; for the second level, the
number of entries is 4,096 and the second PHT field has 2 × 4 bits. The same setting (for
the above stride and two-level predictors) is adopted for the hybrid predictor. The FCM
predictor has 4,096 bits in both the first and second level entries, with 4 × 64 bits used to
calculate the PHT field in the second level.

Table 2 lists the parameters of each value predictor. The parameters are obtained
following the Simplescalar simulator [9, 13, 14]. Take the stride predictor as an example.
The first level entry is the index of VHT, indicating VHT can store a total of 4,096
entries. As the predictor has no second level, the second level entry and the dispatch bits

A NEW DISPATCHING MECHANISM FOR VALUE PREDICTORS

153

Table 2. Parameters of value predictors.

 First level
entry

Second level
entry

No. of data
(per entry)

Dispatch bits
(per entry) Threshold

Last 4,096 1 2
2 level 4,096 4,096 4 12 3
FCM2 4,096 4,096 2 + 4 0 3
Hybrid 4,096 4,096 4 + 1 12 3
Stride 4,096 1 + 1

Table 3. Cost for value predictors.

 No. of data
(per entry)

Difference
value

(per entry)

Dispatch
bits

(per entry)

No. of
PN-bits

(per entry)

Total cost
(total bits)

Last 1 0 0 304K
2 level_4 4 0 12 1160K
FCM2 2 + 4 0 0 1536K
Hybrid_4 4 1 12 1176K
Stride 1 1 0 336K
2 level_2 2 0 12 632K
Hybrid_2 2 1 12 648K

Last + Single + PN-bit + SOdisp 1 0 0 1 304K + 4K
Stride + Single + PN-bit + SOdisp 1 1 0 1 336K + 4K

are ignored. The parameter in the number of data is 1 + 1 because it needs to store a data
value and a difference value; there is no threshold because prediction is made according
to the states, not the threshold value.

Table 3 lists the required cost for various value predictors. The cost is counted by
the needed bits which reflect both the storage and time overhead. (Time overhead due to
comparators of a predictor is dominated by the bits involved in comparisons.) As we can
see, the last and stride predictors have the least cost (304K bits for the former and 336K
bits for the latter) because of their simple architectures.

0

200

400

600

800

1000

1200

1400

1600

Value Predictors

to
ta

l b
its

 (K
bi

ts
)

Last
Last(Single+PN_bit+SOdisp)
Stride
Stride(Single+PN_bit+SOdisp)
2 level_2
2 level_4
Hybrid_2
Hybrid_4
FCM2

Fig. 7. Cost for various value predictors.

PO-JEN CHUANG AND YU-SHIAN CHIU

154

As mentioned, the goal of this paper is to present a cheap dispatching mechanism
which can enhance prediction accuracy for lower-cost value predictors, such as the last
outcome and stride predictors, to compete with the performance of higher-cost predictors,
such as the two-level predictor, at small extra cost. To pinpoint the significance of our
investigation, the cost of the last outcome and stride predictors incorporated with our
proposed dispatching mechanism is also included in Table 3 and Fig. 7. Note that the
cost for adding the proposed dispatching mechanism PN-bit + SOdisp is only 4K which
is obtained from PN-bit (1 bit) × 4,096 (number of the first level entries) + Single PN-bit
(1 bit) × 1 = 4,097 bits, to be fully discussed in later sections.

4. THE PROPOSED DISPATCHING MECHANISM

In our attempt to develop a new dispatching mechanism, we first classify values into
positives and negatives but find that dispatching by such a value classification does not
raise prediction accuracy as much as expected. Speculating that this might be caused by
uneven distribution of the positive and negative values, we conduct an analysis on value
distribution. The result confirms our speculation: There are indeed more positive values
than negative ones. A more detailed value analysis is then undertaken to check the num-
ber of values in 7 divided locations (shown later in Fig. 16). It turns out the number of
values in one specific location (0~268,435,456) almost equals the total number of values
in all the other locations. This finding leads to a more effective dispatching design -- dis-
patching by the specific (location) /others (locations) value classification. (Note that in
determining the range of the divided locations, we first partition values into positive and
negative but find the result undesirable because of uneven distribution of the positive and
negative values. We then attempt to divide the locations into 4 and then more areas until
we find out the number of values in interval 0~268,435,456 almost equals the total num-
ber of values in all other intervals.)

Besides value classification, three value indexing techniques are also presented to
strengthen the proposed dispatching mechanism.

4.1 Previous Dispatching

A large number of value predictors adopt the following dispatching architecture:

(PC div 4) mod 2n (1)

where 2n is the amount of prediction table entries, PC is the instruction address and mod
is the modulo operation.

Built based on programming analysis, the dispatching architecture is simple, fast,
easy to implement and able to yield proper performance. It consists of two major opera-
tions. First, divide the instruction address by 4. As the last two bits in the instruction ad-
dress tend to be zero, taking off these two least significant bits will help attain more
equalized dispatching (to the prediction table). The formula (PC div 4) can be substituted
by right rotating 2 bits as follows:

A NEW DISPATCHING MECHANISM FOR VALUE PREDICTORS

155

PC >> 2. (2)

Then index to the limited prediction table. The result of (PC div 4) is now divided

by 2n and the remainder is taken as the index value. Taking the remainder as the index
value is essential since the number of data to be saved is large and the hardware is lim-
ited.

4.2 The Proposed Dispatching Mechanism

The proposed dispatching mechanism is designed following careful investigation on
previous dispatching practices and aims to reach favorable performance with possibly the
least hardware complexity.

The new dispatching mechanism involves value classification and indexing. Value
classification indicates how to classify the prediction table. As mentioned, data values
can be classified as positive/negative (bigger or smaller than zero) or as specific/others
(in the specific location of 0~268,435,456 or others). Value indexing, on the other side,
demonstrates how to index to the classified VHT. For example, the classified VHT for
positive/negative value classification will be PVHT (positive value history table) or
NVHT (negative value history table), and for specific/others value classification, it will
be SVHT (specific value history table) or OVHT (others value history table).

4.2.1 Value classification

(1) The positive/negative value classification dispatching
Data values are first compared with and separated by zero. After analyzing the val-

ues in the benchmarks, we find that values bigger than zero outnumber values smaller
than zero and set up the positive/negative value classification dispatching. As shown in
Fig. 8, the original VHT is equally divided into PVHT and NVHT to save positive and
negative values. (The size of PVHT and NVHT together equals to that of the original
VHT, making it possible to conduct fair performance comparison between the new dis-
patching architecture and previous ones.)

TAG Value

Value History Table
(VHT)

TAG Value

TAG Value

Positive Value History Table
(PVHT)

Negative Value History Table
(NVHT)

(PVHT Size = VHT size/2)

(NVHT Size = VHT size/2)
Fig. 8. The dispatching architecture with positive/negative value classification.

PO-JEN CHUANG AND YU-SHIAN CHIU

156

(2) The specific/others value classification dispatching
Our value distribution analysis reveals an important fact that the number of values

in location 0~268,435,456 almost equals the total number of values in all the other loca-
tions. This finding initiates the specific/others value classification dispatching method in
Fig. 9.

TAG Value

Value History Table
(VHT)

TAG Value

TAG Value

Specific Value History Table
(SVHT)

Others Value History Table
(OVHT)

(SVHT Size = VHT size/2)

(OVHT Size = VHT size/2)
Fig. 9. The dispatching architecture with specific/others value classification.

In this dispatching architecture, the original VHT is equally divided into SVHT and

OVHT. SVHT is used to save values located in the specific value location (0~268,435,456
in our simulation); OVHT saves values which are otherwise located.

Due to a more balanced utilization of all prediction entries, specific/others value
classification is shown through simulation to outperform positive/negative value classi-
fication in raising prediction accuracy. This is because specific/others value classification
does a better dispatching job by evenly distributing indexing to SVHT and OVHT with-
out adding extra hardware. (The operations of SOVHT and PNVHT are similar. However,
we choose to explain our approaches through the operation of PNVHT in the next section
for easier understanding.)

4.2.2 Value indexing

(1) Indexing by the last instruction result
The last instruction result (being positive or negative) is used during prediction to

select a table (with positive or negative values). To index by the last instruction result,
we need to add one additional bit − the single PN-bit. The single PN-bit stores the last
instruction result which probably indexes to different instructions. To give an example,
when dispatching is conducted under positive/negative value classification: If the single
PN-bit indicates positive (= 1), we choose the table that stores positive values to make
prediction; if the bit is negative, then choose the table with negative values for prediction.
Once the table is decided, prediction will be made following the steps of the original
value predictor. If the prediction result is positive, update PVHT; otherwise, update
NVHT. The advantage of indexing by the last instruction result lies in that it requires
only one more bit and the additional operation involves only the comparison of the single

A NEW DISPATCHING MECHANISM FOR VALUE PREDICTORS

157

Hash
Function

D
E
C
O
D
O
R

Classification Table (CT)
TAG_CT Counter

Positive Value History Table (PVHT)
ValueTAG_VHT

=TAG_CT
TAG_VHT

And
Prediction Valid

Predicted
Data Value

Single
PN-Bit

ValueTAG_VHT
Negative Value History Table (NVHT)

=

>Threshold?

Instruction
Address(PC)

Fig. 10. The architecture for value indexing by the PN-bit of the last instruction result.

Index to PVHT & CT Index to NVHT & CT

TAG_CT =calculated? &
TAG_VHT =calculated?

Single PN-bit

Hash Function

PN-bit = 1 PN-bit = 0

Predict Update

Continue

yes

Update

Continue

Update

Continue

else

Counter >=
threshold ?

no

Yes to all

Predict Update

Continue

yes

Update

Continue

Update

Continue

else

Counter >=
threshold ?

no

Yes to all

Instruction Address(PC)

TAG_CT =calculated? &
TAG_VHT =calculated?

Fig. 11. The flowchart for value indexing by the PN-bit of the last instruction result.

PN-bit with 1 (when both values are equal, index to PVHT or SVHT; otherwise, index to
NVHT or OVHT). The indexing architecture is shown in Fig. 10; its flowchart is de-
picted in Fig. 11.

(2) Indexing by the 2-bit counter

To index by the 2-bit counter, we first dispatch to the index table (IT) whose size is
one half of the original VHT. The indexed IT 2-bit counter will decide which table is to
be used for prediction. If the 2-bit counter is bigger than or equal to 2, take PVHT or

PO-JEN CHUANG AND YU-SHIAN CHIU

158

SVHT for prediction; otherwise, take NVHT or OVHT. Fig. 12 illustrates the architec-
ture of the last outcome value predictor indexing by the 2-bit counter; its flowchart is
depicted in Fig. 13. The 2-bit counter first performs value classification and records the
significant bit of the last instruction result. With a positive result, update the 2-bit counter
of the indexed entry from IT by adding 1 to it (not to exceed the maximum counter
value); otherwise, decrease the value by 1 (if it is bigger than the minimum counter
value). As the 2-bit counter records the significant bit of the last instruction result and
reflects it in the counter value, it will help choose a most recently and frequently used

Hash
Function

D
E
C
O
D
O
R

Classification Table (CT)
TAG_CT Counter

Positive Value
History Table

(PVHT)

ValueTAG_VHT

=
TAG_CT

TAG_VHT

And
Prediction Valid

Predicted
Data Value

ValueTAG_VHT

=

>Threshold?

Negative Value
History Table

(NVHT)

2-bit Counter
Index Table (IT)

Instruction
Address(PC)

Fig. 12. The architecture of the last value predictor using the 2-bit counter for indexing.

Index to PVHT & CT Index to NVHT &CT

Index to IT and check
the 2-bit counter

Hash Function

2-bit counter≧2 2-bit counter≦1

Predict Update

Continue

yes

Update

Continue

Update

Continue

else

Counter >=
threshold ?

no

Yes to all

Predict Update

Continue

yes

Update

Continue

Update

Continue

else

Counter >=
threshold ?

no

Yes to all

Instruction Address(PC)

TAG_CT =calculated? &
TAG_VHT =calculated?

TAG_CT =calculated? &
TAG_VHT =calculated?

Fig. 13. The flowchart of the last value predictor using the 2-bit counter for indexing.

A NEW DISPATCHING MECHANISM FOR VALUE PREDICTORS

159

Fig. 14. The architecture of the last value predictor indexing by the last instruction result and by
collocating the positive and negative bit fields.

prediction table to do the prediction. For example, if the value of the 2-bit counter in an
entry remains 0 all the time − indicating the recent values for the counter are always
negative, NVHT or OVHT will be chosen as the prediction table.

(3) Indexing by the last instruction result and by collocating the positive/negative bit

fields
This indexing operation needs an additional bit, the single PN-bit. It also needs a

PN-bit field in each entry to record the positive or negative status of the last result of
the instruction mapped to the entry. Fig. 14 shows the last outcome predictor with such
an indexing technique. (Dashed lines indicate connection with both PVHT and NVHT.
For example, the TAG_VHT value generated from the hash function needs to compare
with the TAG_VHT value stored in PVHT or NVHT, and the choice of PVHT or NVHT
is decided by the single PN-bit.) Fig. 15 gives the corresponding flowchart. The “in-
dexed” TAG_CT and TAG_VHT are respectively compared with the “calculated” TAG_
CT and TAG_VHT, as mentioned in section 2.1. If both the indexed TAG_CT and
TAG_ VHT equal their calculated counterparts, compare the PN-bit field with the single
PN-bit. If both are positive, choose the table with positive values to make predictions;
otherwise choose the table with negative values. Prediction is then handed over to the
original predictor. After the prediction is made, update only the indexed table classified
by the most significant bit.

With such a comparison mechanism (the PN-bit field), prediction will be more pre-
cisely made. Besides, the added PN-bit field makes it possible to store positive or nega-
tive values at the same entry in the prediction table. To store positive or negative values
is decided by the current instruction results. If the recent instruction results are all posi-
tive, indexing will be directed to the prediction table with positive values and the PN-bit
will be 1 − indicating the indexed table is with positive values or in location 0~268,435,456.
On the other hand, if the recent instruction results are all negative, indexing will be di-
rected to the prediction table with negative values and the PN-bit will be 0, i.e., the in-
dexed table is with negative values or values in locations other than 0~268,435,456.

Hash
Function

D
E
C
O
D
O
R

Classification Table (CT)
TAG_CT Counter

Positive Value History Table (PVHT)
ValueTAG_VHT

=TAG_CT

TAG_VHT

And
Prediction Valid

Predicted
Data Value

PN-bit

Single
PN-Bit

=

ValueTAG_VHT PN-bit
Negative Value History Table (NVHT)

=

>Threshold?

Instruction
Address(PC)

PO-JEN CHUANG AND YU-SHIAN CHIU

160

Index to PVHT & CT

TAG_CT =calculated? &
TAG_VHT =calculated? &
PN-bit = Single PN-bit?

Index to NVHT & CT

Single PN-bit

Hash Function

PN-bit = 1 PN-bit = 0

Predict Update

Continue

yes

Update

Continue

Update

Continue

else

Counter >=
threshold ?

no

Yes to all

Predict Update

Continue

yes

Update

Continue

Update

Continue

else

Counter >=
threshold ?

no

Yes to all

Instruction Address(PC)

TAG_CT =calculated? &
TAG_VHT =calculated? &
PN-bit = Single PN-bit?

Fig. 15. The flowchart of the last value predictor indexing by the last instruction result and by col-

locating the positive and negative bit fields.

5. EXPERIMENTAL EVALUATION

5.1 The Simulation Model, Benchmarks and Value Distribution

Simulations can be trace-driven or program-driven. In trace-driven simulations,

trace data are saved in computers and used in simulating associated programs. Conduct-
ing trace-driven simulations needs a large storage to save the collected trace data. A pro-
gram- driven simulation uses trace data produced directly by the program itself and as a
result each simulation will take longer running time.

This research adopts the trace-driven simulation, using Simplescalar 2.0 [14] in the
Linux system. Trace data are produced by Simplescalar and used in the Visual C++ pro-
gram under Windows 2000. The simulation uses SPECint95 as benchmarks. Description
of the 8 benchmarks is given in Table 4; the input and the total number of instructions for
each benchmark are provided in Table 5.

Table 4. Description of benchmarks.

Gcc Compiler
Go A chess game

M88ksim A simulator for the 88000 processor
Compress Data compression program using adaptive Lempel-Ziv coding

Li Lisp Interpreter
Ijpeg Jpeg encoder
Perl Perl interpreter

Vortex A single user object-oriented database transaction benchmark

A NEW DISPATCHING MECHANISM FOR VALUE PREDICTORS

161

Table 5. The input and total number of instructions for each benchmark.

Benchmark Input Total execution counts
Gcc amptjp.i(train) 1,276,486,588
Go 2stone9.in(train) 548,177,629

M88ksim ctl.in(train) 48,269,168
Compress test.in(train) 35,818,826

Li train.lsp(train) 183,304,340
Ijpeg vigo.ppm(train) 1,464,821,356
Perl primes.in(train) 10,519,469

Vortex Vortex.in(train) 2,520,154,589

0%

20%

40%

60%

80%

100%

compress gcc go ijpeg li m88ksim perl vortex

1073741824~2147483648

805306368~1073741824

536870912~805306368

268435456~536870912

0~268435456

-1073741824~0

-2147483648~-1073741824

Fig. 16. Value distribution patterns for various benchmarks.

Value distribution patterns for the 8 benchmarks are presented in Fig. 16. The re-

sults show a common trend for most benchmarks − the number of values located in
0~268,435,456 is larger than the total number of values in the other locations. The dif-
ference is especially evident in benchmark compress.

5.2 Simulation Results

The following terms are provided to facilitate further discussion. (Note that PNVHT

and SOVHT need to work with either the Single or the PN-bit indexing.)

Original: the original architecture of a value predictor
Single: the original architecture of a value predictor with the proposed single PN-bit in-

dexing
PN-bit: the original architecture of a value predictor with the proposed PN-bit field in-

dexing
PNdisp: the original architecture of a value predictor with the original VHT being virtu-

ally partitioned into two equal sized tables, PVHT and NVHT (the positive/
negative value classification dispatching, using PNVHT)

SOdisp: the original architecture of a value predictor with the original VHT being virtu-
ally partitioned into two equal sized tables, SVHT and OVHT (the specific/others
value classification dispatching, using SOVHT)

PO-JEN CHUANG AND YU-SHIAN CHIU

162

+: combined with the proposed value indexing and classification

5.2.1 Accuracy vs. dispatching by positive/negative value classification

Figs. 17 and 18 collect prediction accuracy for the last outcome and stride predictors

indexing with and without the single PN-bit/PN-bit field under positive/negative value
classification dispatching. Fig. 17 displays that with the proposed single PN-bit/PN-bit
field indexing, the last outcome predictor increases the average prediction accuracy. The
increase may come from a more sophisticated indexing step: Prediction starts only
when both the tag and the PN-bit are compared. In Fig. 18, the stride predictor with the

Entry=4096

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

co
m
pr
es
s

gc
c go

ijp
eg li

m
88
ks
im pe

rl

vo
rte
x

Av
er
ag
e

benchmark

ac
cu
ra
cy

Last(Original)

Last(Single+PN-bit+PNdisp)

Fig. 17. Prediction accuracy for the last outcome predictor indexing with and without the single PN

bit/PN-bit field under positive/negative value classification.

Entry=4096

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

co
m
pr
es
s

gc
c go

ijp
eg li

m
88
ks
im pe

rl

vo
rte
x

Av
er
ag
e

benchmark

ac
cu
ra
cy

Stride(Original)

Stride(Single+PN_bit+PNdisp)

2Level_2

Fig. 18. Prediction accuracy for the stride predictor indexing with and without the single PN-

bit/PN-bit field under positive/negative value classification.

A NEW DISPATCHING MECHANISM FOR VALUE PREDICTORS

163

Fig. 19. Prediction accuracy for the last outcome predictor indexing with and without the single
PN-bit/PN-bit field under specific/others value classification.

proposed PNdisp dispatching produces lower prediction accuracy in some benchmarks
but yields higher average accuracy (over the 8 benchmarks) than the original architec-
ture.

We find out during simulation that value distribution in benchmarks ijpeg and
m88ksim differs from that in the other benchmarks: The two benchmarks have distinctly
larger number of negative values. That explains why both the last outcome and stride
predictors turn over higher prediction accuracy in these two benchmarks when dispatch-
ing by positive/negative value classification.

5.2.2 Accuracy vs. dispatching by specific/others value classification

Based on our analysis on benchmarks (that the amount of values located in 0~

268,435,456 approximately equals the total number of values located in all the other lo-
cations), we develop a special value classification method to conduct more efficient
utilization of all prediction entries. The specific/others value classification dispatching
method stores the values in 0~268,435,456 in one table and the values in all other loca-
tions in another table. When the amount of values is thus divided into two almost equal
parts and stored in two tables, all prediction entries can be utilized in a more balanced
and efficient way.

Figs. 19 and 20 give prediction accuracy for the last outcome and stride value pre-
dictors indexing with and without the single PN-bit/PN-bit field under the specific/others
value classification. The result in Fig. 19 shows the last outcome predictor generates
clear accuracy gain in nearly all benchmarks when indexing by the single PN-bit/PN-bit
field, and such accuracy gain is obtained at a small additional cost of 4K.

In Fig. 20, the stride predictor indexing by the single PN-bit/PN-bit field produces
better accuracy in all 8 benchmarks, and the enhanced average accuracy comes close to
that of the two-level_2 value predictor. It should be noted that the two-level_2 predictor
takes 632K to attain the slightly superior accuracy, while the stride predictor with the
single PN-bit/PN-bit field indexing requires only 340K to get close results. (340K =
336K + 4K. 336K is the stride predictor’s original cost; 4K is the cost for the proposed

Entry=4096

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

co
m
pr
es
s

gc
c go

ijp
eg li

m
88
ks
im pe

rl

vo
r te
x

A
ve
ra
ge

benchmark

ac
cu
ra
cy

Last(Original)

Last(Single+PN_bit+SOdisp)

PO-JEN CHUANG AND YU-SHIAN CHIU

164

 Entry=4096

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

co
m
pr
es
s

gc
c go

ijp
eg li

m
88
ks
im pe

rl

vo
rte
x

Av
er
ag
e

benchmark

ac
cu
ra
cy

S tride(Original)

Stride(Single+PN_bit+SOdisp)

2Level_2

Fig. 20. Prediction accuracy for the stride predictor indexing with and without the single PN-bit/

PN-bit field under specific/others value classification.

single PN-bit/PN-bit field indexing.) Thus, when hardware complexity is taken into ac-
count, our proposed indexing technique proves to be efficient in strengthening the per-
formance of value predictors.

6. CONCLUSION

A desirable dispatching mechanism may raise prediction accuracy and thus enhance
the performance of value predictors. This paper presents a new dispatching mechanism
for value predictors, which involves special value classifications and simple indexing
devices, and is demonstrated through experimental evaluation to improve prediction ac-
curacy at very minimal extra cost.

Two value classification methods, positive/negative value classification and spe-
cific/others value classification, are introduced according to the special features of value
distribution patterns collected in our analysis. The main purpose of dispatching by such
value classifications is to attain more balanced utilization of all prediction entries and
thus to assist the operation of value predictors. A number of value indexing devices, in-
cluding indexing by the last instruction result, indexing by the two-bit counter, and in-
dexing by the last instruction result and by collocating the positive/negative bit fields, are
also taken to ensure more sophisticated and precise predicting steps.

Extensive simulation runs have been conducted to compare the performance of
value predictors dispatching under the two value classifications and different ways of
value indexing. The results exhibit that dispatching under specific/others value classifi-
cation enables predictors to produce better prediction accuracy gain than dispatching
under positive/negative value classification, indicating that the former makes it possible
to employ prediction entries in a more balanced way. Simulation results also display that
predictors indexing by the proposed single PN-bit and the PN-bit field constantly out-
perform their original forms, and the increased performance, i.e., accuracy gain, is at-
tained at very limited additional hardware cost.

A NEW DISPATCHING MECHANISM FOR VALUE PREDICTORS

165

REFERENCES

1. A. Sodani and G. S. Sohi, “Understanding the differences between value prediction
and instruction reuse,” in Proceedings of the 31st Annual IEEE/ACM International
Symposium on Microarchitecture, 1998, pp. 205-215.

2. R. Sathe and M. Franklin, “Available parallelism with data value prediction,” in Pro-
ceedings of the 5th International Conference on High Performance Computing, 1998,
pp. 194-201.

3. S. J. Lee, Y. Wang, and P. C. Yew, “Decoupled value prediction on trace processors,”
in Proceedings of the 6th International Conference on High-Performance Computer
Architecture, 1999, pp. 231-240.

4. M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit via value prediction,” in
Proceedings of the 29th Annual IEEE/ACM International Symposium on Microar-
chitecture, 1996, pp. 226-237.

5. M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, ”Value locality and load value predic-
tion,” in Proceedings of the 7th International Conference on Architectural Support
for Programming Languages and Operating Systems, 1997, pp. 248-258.

6. F. Gabbay and A. Mendelson, “Can program profiling support value prediction?” in
Proceedings of the 30th International Conference on Microarchitecture, 1997, pp.
270-280.

7. T. Nakra, R. Gupta, and M. L. Soffa, “Global context-based value prediction,” in
Proceedings of the 5th International Conference on High-Performance Computer
Architecture, 1999, pp. 4-12.

8. T. Y. Yeh and Y. N. Patt, “Alternative implementations of two-level adaptive branch
prediction,” in Proceedings of the 19th International Conference on Computer Ar-
chitecture, 1992, pp. 124-134.

9. K. Wang and M. Franklin, “Highly accurate data value prediction using hybrid pre-
dictors,” in Proceedings of the 30th Annual IEEE/ACM International Symposium on
Microarchitecture, 1997, pp. 281-290.

10. B. Calder, G. Reinman, and D. M. Tullsen, “Selective value prediction,” in Proceed-
ings of the 26th International Conference on Computer Architecture, 1999, pp. 64-74.

11. B. Goeman, H. Vandierendonck, and K. DeBosschere, “Differential FCM: Increasing
value prediction accuracy by improving table usage efficiency,” in Proceedings of
the 7th International Symposium on High-Performance Computer Architecture, 2001,
pp. 207-216.

12. Y. Sazeides and J. E. Smith, “The predictability of data values,” in Proceedings of
the 30th International Conference on Microarchitecture, 1997, pp. 248-258.

13. P. J. Chuang, Y. T. Hsiao, and Y. S. Chiu, “An efficient value predictor dynamically
using loop and locality properties,” Journal of Supercomputing, Vol. 30, 2004, pp.
19-36.

14. D. Burger, T. M. Austin, and S. Bennett, “Evaluating future microprocessors: the
simplescalar tool set,” Technical Report No. CS-TR-96-1308, Dept. of Computer
Science, University of Wisconsin-Madison, U.S.A., 1996.

PO-JEN CHUANG AND YU-SHIAN CHIU

166

Po-Jen Chuang (莊博任) received the B.S. degree from
National Chiao Tung University, Taiwan, R.O.C., in 1978, the
M.S. degree in Computer Science from the University of Mis-
souri at Columbia, U.S.A., in 1988, and the Ph.D. degree in Com-
puter Science from the Center for Advanced Computer Studies,
University of Southwestern Louisiana, Lafayette, U.S.A. (now
the University of Louisiana at Lafayette), in 1992. Since 1992, he
has been with the Department of Electrical Engineering, Tam-
kang University, Taiwan, where he is currently a Professor. He
was the department chairman from 1996 to 2000. His main areas

of interest include parallel and distributed processing, fault-tolerant computing, computer
architecture, and mobile computing. Dr. Chuang is a member of the IEEE, the IEEE
Computer Society, the ACM, and the IICM.

Yu-Shian Chiu (邱育賢) received the B.S. and M.S. de-
grees in Electrical Engineering in 2001 and 2003 from Tamkang
University, Taiwan, where he is currently pursuing the Ph.D. de-
gree. His research interests include parallel and distributed proc-
essing, computer architecture, and mobile computing.

